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A VERSION OF A REFINED NON-LINEAR THEORY OF THIN ELASTIC SANDWICH SHELLS OF 
ITERATION TYPE* 

V.N. PAIMUSHIN 

A version is proposed for the refined non-linear theory of thin elastic 
sandwich shells of a quadratic approximation based on reliance on the 
traditional Kirchhoff-Love hypotheses on the outer layers and a refined 
model on the filler. An iteration procedure is used to construct the 
latter, within whose framework expressions are derived for the 
components of the displacement vector in the first stage, under the 
assumption that the filler is transversely soft, by successive 
integration of the relationships of the three-dimensional theory of 
thermoelasticity with respect to the transferse coordinate. These 
expressions are then used in the second stage to calculate the 
components of the strain and stress tensor yielding to refinement. The 
advisability of using the set of relationships obtained to investigate 
the stability of sandwich shells in the refined formulation in order to 
clarify mixed buckling modes of the outer layers and the shell as a 
whole, is noted. 

The refined classification of buckling modes of sandwich plates and shells /l/ includes, 
in addition to the cophasal (skew-symmetric) and antiphasal (symmetric) modes described and 
studied in the literature /2, 31, a mixed mode of outer layer buckling. The equations 
proposed in /I/ for investigating mixed buckling modes and used (in /4/, etc.) to solve 
specific problems and based on the static-kinematic model of a "broken" line /3/, are 
ultimately simplified. They required refinement in order to formulate stability problems, 
firstly for those sandwich structures for which the thicknesses of the outer layers @ha,, A = 

f, 2) and the filler (2k) satisfy the conditions h&h-ee, where e is a certain small quantity 

that can be neglected compared with unity (sandwich structure with quite thin outer layers). 
In this connection, a modification is proposed of the relationships derived in /5/ based on 
using the iteration procedure to refine the state of stress and strain in the filler. Tempera- 
ture effects are also taken into account within the framework of the relationships of un- 
coupled thermoelasticity. 

1. AS in /5/, we refer the spaces occupied by the filler and the outer layers to the 
parametrizations 

p(a',z) = r(a') + zm, P(k) (uiY z(k)) = r(k) + z(k)m 

r(k) = r - 6(k) (h + h(k)) m, -h,<z<h, - h(k) < z(k) <h(k) 

where r is the radius-vector of a point M on the middle surface of the filler a referred to 
a curvilinear system of coordinates ai 
-rimj; m, mj = &nidaj 

and characterized by the metric tensors ai, = fir,, b,, = 
is the unit normal vector to CJ and its derivative with respect to 

a'; 2h, 2h,,, are the filler and carrying layer thicknesses (k = 2 for the upper layer and 

k=l for the lower layer), 6(,, is a symbol that takes the integer values &,, = 1 and 

$,, = --1, and r(k) are radius-vectors of points on the middle surfaces of the outer layers 

“(k)* We consider the filler and outer layers to be thin by assuming the following approxi- 
mate equalities to be satisfied 

13~~ - htkjbi3 z &I, 6*’ - hbi’ z hi’ 

(I&’ are Kronecker deltas), consequently, 
on (J and pi = apIaa”, pi(k) = i3p~k,/aai. 

we later identify the basis vectors ri = 8r/aai 

We take the Kirchhoff-Love hypothesestransitional in the theory of sandwich shells /3/ 
to describe the mechanics of outer-layer deformation, and within their framework express the 
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displacement vector U(k) of the k-th outer layer and the covariant components of its tangential 
strain tensor during average shell bending by the equalities /6/(ri are covariant differen- 
tiation operators in the metric aik) 

(1.1) 

(1.2) 

In order to establish a law for the variation of the filler displacement vector component 
U = Uir' + U,m along the z coordinate, we make the assumption 

on = en = 022 Z 0 (1.3) 

for its shear stress tensor components cij by considering the filler transversely soft at 
this stage. 

On using these equalities, the successive integration of the equilibrium equations written 
for the filler to the accuracy of 6,'- zbi’zhii and neglecting bulk forces therein, we 
obtain the formulas /5/ 

085 = !JJ - (2 + 12) Yiqi, qoT = qu,3 - 2hV,$ (1.4) 

where pi = o'"(a) are transverse shear stresses independent of z, and &) = cyJ (a', .?J = --6&) 
are values of the transverse compressive stresses at points of the surface 2 = --6,k,h. 

Within the framework of the same degree of accuracy given by the approximate equalities 
(1.3) and 6; - zbi’ z ?I+), the equation of state for us3 corresponding to relationships of 

the uncoupled problem of thermoelasticity will, when the first formula in (1.4) is taken into 
account, have the form 

u"" = E, (dlJs/8z - a,T) = ys, - (z + h) Viqi (1.5) 

not only for small but also for average shell bending. Here E,, a, are the elastic modulus 
and coefficient of thermal expansion of the filler in the z direction, and T is the temperature 
increment. 

Integration of this equation and subsequent satisfaction of the kinematic conditions for 
connecting the outer layers to the filler according to deflections 

u, Iz=-_h = W!'), u, I&, = W(2) 

results in the formulas 

(1.6) 

(1.7) 

(1.8) 

where ~3, is the deformation of transverse compression of the filler. 

To establish a law of the change of the tangential components of the displacement in the 
filler with respect to 2, we turn to the equations of state for ~'8. In the case of average 
bending for a filler with elastic properties symmetric with respect to the surfaces z = const, 
these equations can be represented in the following approximate form: 

&a = y? = 2Aike k3 = A’k [(Bk8 - zb,‘) XJ,/Bz + 8U,jaak + bkSUs] z 

A’” (au,laz + v,u,) 
(1.9) 

where A’k is the bivalent tensor of the filler shear elastic constants. Starting from (1.8) 
and (l.g), we arrive at a different eqUatiOn to determine u1, 

(1.10) 



in which the quantities ViW(") are replaced by the quantities o$"' to the assumed degree 

of accuracy apparent when substituting relationships (1.8) into (1.9). 
Furthermore, integrating (1.10) with respect to s we obtain 
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U, = uk + dkiqi - z 
6p f kg’ $ 

2 --&&b#)) +& i $ -h%) V,V,q~ -t_ 

-&($ ) + hz Vii& - V,A, 
z 

Satisfying relationships (1.1) and (1.11) for the connection conditions of the outer 
layers to the filler in tangential displacements 

U$" - h(~$i#' = Vi I*-_h* Uy) + hf(2)W !Z) = ui I& 

we arrive at a system of two algebraic equations from which the relations 

are established. Substituting these relations into (l.ll), we obtain 

(1.1%) 

(1.12) 

As follows from (1.8) and (1.5), the displacement field in the filler is determined in 
terms of eight two-dimensional functions u!,"', w(k), q’ that appear in a natural way during 
integration of the three-dimensional relationships of thermoelasticity with respect to z with- 
in the framework of the assumptions (1.81 made and the further satisfaction of the kinematic 
connection conditions for the outer layers and the filler. Subsequent utilization of relation- 
ships (1.8) and 11.1.X), that hold for average shell bending, enables us to evaluate the 
tangential components of the strain tensor in the filler, which turn out to be the following 
in a linear approximation with accuracy 6ik - zbikz8ik 

and then, dropping the initial simplifying assumptions (1.3) at this stage, calculate the 
shear stress tensor components from the formulas 

(1.14) 

and refine the transverse compressive stress in the filler as compared with (1.5). 
The procedure elucidated for constructing a refined elastic deformation model of a sand- 

which shell is an iteration type, and the limits of its applicability are determined by the 
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limit of applicability of the assumption biS- q*(ak), that remains valid and occurs exactly 
only under strict compliance with the equalities (1.3). It differs from the iteration pro- 
cedure for constructing refined models in the mechanics of plates and shells proposed in /7/ 
and applied later in the theory of laminar shells (181, etc.) by the initial equalities (1.3) 
used, that more adequatly reflect the stress field in the filler of sandwich shells. We also 
note that within the framework of expressions (1.8) and (1.12), non-linear kinematic relation- 
ships of a quadratic approximation can indeed be compiled in place of the linear relationships 
(1.12). However, their use to construct a linearized theory and to formulate stability 
problems in order to investigate mixed modes, described in /l/, is not advisable because of 
the serious complication of their corresponding relationships without considerable refinement. 

2. We introduce into our consideration vectors of the given forces and moments 

Q'k' =@'n + c@,"!z f @$'m, L(k)= 11$&l + L$% 

as applied to the boundary contours CO, of the middle surfaces of the outer layers, the 
vectors of the external surface forces and the moments 

Xcr, = X&,r z -+- X~'m, M (k) = n/l&,G 

reduced to the surfaces a(kt, the bulk force vector in the filler given by the expansion 

F=@r+ + Pm 

and also the vector of the surface forces p given by the expansion 

p = p,n +.wn7r + P3m 

applied to the filler boundary cut, where (n, T are vectors of the unit normal and tangent 
to the contour C =C(k)). 

An expression can be obtained for the work of the above-mentioned external forces on 
their corresponding possible displacements by using relationships (1.8) and (1.12) (ds is 
the element of length of the contour line C, integration with respect to z is performed 
everywhere later within the limits -k and k, and summation is from k-It0 k=2) 

If generalized internal forces and moments are introduced into consideration 

in which ij jpf ij 

in the out~?l'aye~~ 
are contravariant components of the internal force and moments tensor 

, reduced to their middle surfaces and the equality ~c&E~, = dkiqk6qi, is 
taken into account, we arrive at the expression 
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[l/&k)T= + hJ (T;6, + s;fk,,l 6 W(k)) + CijqiSQj + 

N"'d~,v&~ + E;l (b<JH'j - MS’) v&f) do 

when taking account of relationships (1.12), (1.2) and (1.7) to calculate the variations in 
the strain potential energy of the shell as a whole. 

Starting from (1.2), (2.1) and (2.3), a Lagrange variational equation of the fOllOW%J 

kind can be set up after traditional manipulations: 

(2.41 

(2.5) 

A system of eight equilibrium differential equations 

fCkji = 0, ftkjy = 0, y, = 0 

and their corresponding boundary conditions at points of the contour c 

W.1 
(Pn = tn (') for R@+.O, ~$2 = t$ for 6uik'# 0 

(k) - d&k$ds = S:k,ni - dg&!:,‘lds for gw(rj # 0 

d, (Pn -“;;r,J + d,,, (P,, - IV,,) - E,-’ (bijHi’ - My” + Q”) = 

0 for 6q, # 0, d,, (P, - NJ + d, (Pnr -,N,,,) = 0 for qr # 0 

(2.6) 

(2.7) 

follows from the variational Eq.(2.4) constructed. 
The static conditions 1,&k) - g&k) = 0 for BwcK) # 0 that have the same meaning as in 

the classical Kirchhoff-Love theory of shells, are appended to the latter at the free angular 
point of the contour ct,). 

Within the framework of the model constructed, there is no possibility of formulating a 
static boundary condition related by Vi&$, as follows from the contour integral of (2.4), 
i.e., the component E,-‘PmVi&’ is not needed in (2.1) and therefore in (2.4) either. 

The elasticity relationships set up by the dependence between the force factors t2f,, 4ib 
$,, pa, ~38, @, Hij introduced into the consideration and the eight unknown functions .!‘f) z , 
&), qi are comprised on the basis of (2.2) using (1.2), (1.7) and (1.12) and elasticity 
relationships for the outer layers, not presented here, that are described within the frame- 
work of the usualKirchhoff-Lovemodel taking temperature effects into account. 

The linearized equations of the theory of elastic stability of sandwich shells within 
the framework of the Euler concept of the existence of two adjacent equilibrium modes at the 
instant of buckling are established by starting from the derived set of relationships by the 
traditional method. They enable the mixed buckling modes described in /l/ to be investigated 
in a refined formulation. 

3. If we turn to the initial assumptions (1.3), oii =O, then (2.2) take the form 
ij 

t;;, = T(k), 
&, = M;,, S$, = N’j = H’j = (i 

Since 

T”” = s oyydz = E, (W(Z) - &)), ~38 = _zi,pviqi + J@+, 

ME) = E, 5 a,Tzdz 

here, the six outer layer equilibrium equations following from (2.5) and (-2.6) 
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and the two equations that hold for the filler 

u, = 2/3E’,1~aV,Viqi- E,-'V,MF, + &'V,Qs - ci3qi + c&Q" = 0 

turn out not to be interrelated and lose their physical meaning. Therefore, the set of 
relations constructed in the previous sections does not allow formal passage to the model of 
a transversely-soft filler. The set of relationships taking account of temperature effects 
on the shell that is needed for this case can be constructed using the procedure described in 
/5/. 
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DEFORMATION OF A VISCOELASTIC CYLINDER FASTENED TO A 

HOUSING UNDER NON-ISOTHERMAL DYNAMIC LOADING* 

L.KH. TALYBLY 

The state of stress and strain is determined for a hollow long 
mechanically incompressible viscoelastic cylinder fastened to an elastic 
shell. Unlike other publications /l, 2/, the case of non-isothermal 
dynamic loading is examined. The cylinder material is considered to be 
physically non-linear and a physically linear viscoelastic medium whose 
mechanical properties depend considerably on the temperature. The 
temperature field is inhomogeneous and non-stationary. A change in the 
inner surface of the cylinder with time is allowed during the loading. 
The results of the solution enable safe working conditions for the 
structure under consideration to be found for definite temperature, 
mechanical, and geometric data. Some characteristic graphs of the 
contact stress as a function of time are presented in the case of 
instantaneous delivery of heat to the inner and outer cylinder surfaces. 
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